// challenge-bot // GNU AGPLv3 (or later at your option) // project available at these locations: // https://gitorious.org/ozzloy/challenge-bot // https://github.com/waynegramlich/challenge-bot /* this holds an hc-sr04 sonar sensor to a 3/16 inch deck. http://fritzing.org/projects/hc-sr04-project it can hold the sonar sensor either facing down, or forwards. when facing down, it can detect if it passes over the edge of a table. when facing forwards, it can detect and follow something in front of it. */ $fn = 60; use // 3/16 inch in mm deck_depth = 4.7625; // 1/4 inch in mm = 6.35 // subtract a little to be a squeeze fit deck_depth = 4.7625 - 0.4; // sonar sensor measurements taken with calipers: // 10.82 in between, 42.33 outside, 15.82 diameter // measured diameter of 15.82 with calipers, // but when printed ends up being too small, so add some sonar_diameter = 15.82 + 0.4; sonar_radius = sonar_diameter / 2; sonar_height = 13.8; between_sonar_centers = sonar_diameter + 10.82; // the sonar cylinders are placed on the pcb at slightly different positions // from one sensor to the next, so this allows for that variance. between_sonar_centers_variance = 2; // keep at least this much plastic surrounding the sonar cylinder on all sides buffer = 3; sonar_holder_length = buffer + between_sonar_centers + sonar_diameter + buffer; sonar_holder_width = buffer + sonar_diameter + buffer; // sonar_holder_depth is deck_depth minus a little bit to make arm fit // into deck holder sonar_holder_depth = deck_depth - 0.7875; deck_holder_length = sonar_holder_depth * 2 + deck_depth + 15; oshw_dy = 120.366; oshw_dx = 133.888; // 3/16 inch in mm deck_depth = 4.7625; // 1/4 inch in mm = 6.35 // subtract a little to be a squeeze fit deck_depth = 4.7625 - 0.4; // sonar sensor measurements taken with calipers: // 10.82 in between, 42.33 outside, 15.82 diameter // measured diameter of 15.82 with calipers, // but when printed ends up being too small, so add some sonar_diameter = 15.82 + 0.4; sonar_radius = sonar_diameter / 2; sonar_height = 13.8; between_sonar_centers = sonar_diameter + 10.82; // the sonar cylinders are placed on the pcb at slightly different positions // from one sensor to the next, so this allows for that variance. between_sonar_centers_variance = 2; // keep at least this much plastic surrounding the sonar cylinder on all sides buffer = 3; sonar_holder_length = buffer + between_sonar_centers + sonar_diameter + buffer; sonar_holder_width = buffer + sonar_diameter + buffer; // sonar_holder_depth is deck_depth minus a little bit to make arm fit // into deck holder sonar_holder_depth = deck_depth - 0.7875; deck_holder_length = sonar_holder_depth * 2 + deck_depth + 15; module sonars() { translate([between_sonar_centers / 2, 0, 0]) { cylinder(r = sonar_radius, h = sonar_height); } // for the variance with which the physical sonar cylinders are placed translate([between_sonar_centers / 2 - between_sonar_centers_variance, 0, 0]) { cylinder(r = sonar_radius, h = sonar_height); translate([0, -sonar_radius, 0]) { cube([between_sonar_centers_variance, sonar_diameter, sonar_height]); } } translate([-between_sonar_centers / 2, 0, 0]) { cylinder(r = sonar_radius, h = sonar_height); } } module sonar_holder() { elbow_length = deck_depth; rounded_corner_radius = buffer; difference() { cube([sonar_holder_length, sonar_holder_width, sonar_holder_depth]); translate([sonar_holder_length / 2, sonar_holder_width / 2, -0.05]) { sonars(); } translate([sonar_holder_length - rounded_corner_radius, sonar_holder_width - rounded_corner_radius, 0]) { corner_rounder(rounded_corner_radius, sonar_holder_depth); } } translate([sonar_holder_length, 0, 0]) { cube([elbow_length, deck_depth, sonar_holder_depth]); translate([elbow_length, 0, 0]) { linear_extrude(height = sonar_holder_depth) { polygon([[ 0, 0], [sonar_holder_depth, 0], [sonar_holder_depth, sonar_holder_width / 2], [ 0, sonar_holder_width / 2 + sonar_holder_depth]]); } translate([0, (sonar_holder_width + sonar_holder_depth) / 2, 0]) { cube([sonar_holder_depth / 2, (sonar_holder_width - sonar_holder_depth) / 2 + 0.8, sonar_holder_depth]); } translate([-1.7, sonar_holder_width + 0.8, 0]) { linear_extrude(height = sonar_holder_depth) { polygon([[ 0, 0], [sonar_holder_depth / 2 + 1.7, 4], [sonar_holder_depth / 2 + 1.7, 0]]); } } } } } module deck_holder() { deck_holder_width = sonar_holder_width - deck_depth; deck_holder_height = sonar_holder_depth * 2 + deck_depth; linear_extrude(height = deck_holder_width) { difference() { square([deck_holder_length, deck_holder_height]); translate([sonar_holder_depth - 0.15, sonar_holder_depth - 0.15]) { square(deck_depth + 0.3); } translate([deck_holder_height, sonar_holder_depth - 0.3]) { square([deck_holder_length - (deck_holder_height), deck_depth + 0.6]); } } } translate([deck_holder_length - oshw_dy * 0.05, 0, deck_holder_width / 2]) scale([0.1, 1, 0.1]) rotate(v = [1, 0, 0], a = 90) rotate(90) linear_extrude(height = 0.5) oshw(); translate([deck_holder_length - oshw_dy * 0.05, deck_holder_height + 0.5, deck_holder_width / 2]) rotate(v = [1, 0, 0], a = 90) rotate(90) scale([0.1, 0.1, 1]) linear_extrude(height = 0.5) oshw(); } module corner_rounder_2d(radius) { difference() { square(radius); circle(radius); } } module corner_rounder(radius, height) { linear_extrude(height = height) { corner_rounder_2d(radius); } }