make spin with slices using fast layer height
[ozzloy@gmail.com/3d-printables] / spin-data.scad
1 /* GNU AGPLv3 (or later at your option)
2 see bottom for more license info */
3
4 /* spin thing that erin likes */
5 $fn = 50;
6
7 layer_height = 0.35;
8
9 weight = "penny";
10 // weight = "608zz";
11 bearing = "608zz";
12 weight_lip_overhang = 0.3;
13 bearing_lip_overhang = weight_lip_overhang;
14 // TODO: switch wall_thickness -> wall
15 wall_thickness = 3;
16 wall = 3;
17 penny_thickness = 1.52;
18 penny_radius = 19.05 / 2;
19
20 _608zz_radius = 22 / 2;
21 _608zz_inner_radius = 8.1 / 2;
22 _608zz_cover_radius = 19.4 / 2;
23 _608zz_cap_footprint_radius = 12 / 2;
24 _608zz_thickness = 7;
25
26 weight_radius = (weight == "penny") ? penny_radius : _608zz_radius;
27 weight_thickness = (weight == "penny") ?
28 penny_thickness * 5 : _608zz_thickness;
29
30 bearing_radius = (bearing == "608zz") ? _608zz_radius : 1/0;
31 bearing_inner_radius = (bearing == "608zz") ? _608zz_inner_radius : 1/0;
32 bearing_cover_radius = (bearing == "608zz")
33 ? _608zz_cover_radius + wall
34 : 1/0;
35 bearing_cap_footprint_radius =
36 (bearing == "608zz") ? _608zz_cap_footprint_radius : 1/0;
37 bearing_thickness = (bearing == "608zz") ? _608zz_thickness : 1/0;
38
39 spinner_height = penny_thickness * 5 + 2;
40 arms = 3;
41
42 module cap(bearing_inner_radius,
43 bearing_cap_footprint_radius,
44 bearing_cover_radius,
45 bearing_thickness) {
46 footprint_height = 1.6;
47 footprint_radius_safety = 0.25;
48 cap_height = 3;
49 bearing_cover_radius_safety = 0.75;
50 bearing_thickness_safety = 0.2;
51
52 difference() {
53 union() {
54 cylinder(r1 = bearing_cover_radius - tan(30) * cap_height,
55 r2 = bearing_cover_radius,
56 h = cap_height);
57 linear_extrude(height = cap_height + footprint_height) {
58 circle(bearing_cap_footprint_radius - footprint_radius_safety); }
59 linear_extrude(height = cap_height
60 + footprint_height
61 + bearing_thickness / 2
62 - bearing_thickness_safety) {
63 circle(bearing_inner_radius); } }
64 translate([0, 0, -0.01]) {
65 cylinder(r1 = bearing_inner_radius + tan(30) * (cap_height - 1),
66 r2 = bearing_inner_radius,
67 h = cap_height - 1); } } }
68
69 module fillet(r) {
70 offset(r = -r) { offset(delta = r) { children(); } } }
71
72 module mirrored(axis) {
73 children();
74 mirror(axis) children(); }
75
76 module spin_slice(weight_radius,
77 bearing_radius,
78 round_extra,
79 wall,
80 arms) {
81 joiner_radius = (bearing_radius + weight_radius) / 2;
82
83 bearing_xy = [0, 0];
84 // a = side along x axis
85 a = bearing_radius + weight_radius + wall;
86 // b = side from center to joiner
87 b = bearing_radius + joiner_radius + round_extra;
88 // c = side between joiner and arm center
89 c = joiner_radius + weight_radius + round_extra;
90
91 weight_xy = [a, 0];
92
93 cos_C = (pow(a, 2) + pow(b, 2) - pow(c, 2)) / (2 * a * b);
94 sin_C = sqrt(1 - pow(cos_C, 2));
95
96 joiner_xy = [cos_C, sin_C] * b;
97
98 for(arm = [0 : arms - 1]) {
99 rotate(arm * (360 / arms)) {
100 difference() {
101 union() {
102 translate(bearing_xy) {
103 circle(bearing_radius + round_extra); }
104 translate(weight_xy) {
105 circle(weight_radius + round_extra); }
106 mirrored([0, 1]) {
107 polygon([bearing_xy, weight_xy, joiner_xy]); } }
108 mirrored([0, 1]) {
109 translate(joiner_xy) {
110 circle(joiner_radius); } } } } } }
111
112 module spin_slices(weight_radius,
113 weight_thickness,
114 bearing_radius,
115 bearing_thickness,
116 weight_lip_overhang = 0.3,
117 bearing_lip_overhang = 0.3,
118 wall = 3,
119 arms = 3,
120 layer_height = 0.15) {
121 thicker_thickness = (bearing_thickness > weight_thickness) ?
122 bearing_thickness : weight_thickness;
123 calculated_height = thicker_thickness + 2 * wall;
124 layers = 2 * ceil(ceil(calculated_height / layer_height) / 2);
125 actual_height = layers * layer_height;
126 round_radius = actual_height / 2;
127
128 /* rounding the outside edge of the spinner with a semi-circle leads
129 to a shape that an overhang on the second layer several times the
130 thickness of a printed extrusion width.
131
132 rather than using a full semi-circle, this code aims to use just the
133 portion in the middle, where the overhang is less severe */
134 old_start = 0;
135 old_end = (layers / 2) - 1;
136
137 /* add one to have some thickness all around weight holes
138 for first layer */
139 new_start = old_end / 8 + 1;
140 new_end = old_end;
141
142 old_range = old_end - old_start;
143 new_range = new_end - new_start;
144
145 factor = new_range / old_range;
146
147 /* initial adjacent is adjusted to (new start - 1) to allow some
148 thickness all around weight holes on first layer */
149 initial_adjacent = round_radius - ((new_start - 1) * layer_height);
150 initial_angle = acos(initial_adjacent / round_radius);
151 initial_round_extra = initial_adjacent * tan(initial_angle);
152
153 difference() {
154 mirrored([0, 0, 1]) {
155 for(layer = [0 : (layers / 2) - 1]) {
156 translate([0, 0, layer * layer_height - actual_height / 2]) {
157 linear_extrude(height = layer_height) {
158 new_layer = (layer - old_start) * factor + new_start;
159 adjacent = round_radius - (new_layer * layer_height);
160 angle = acos(adjacent / round_radius);
161 round_extra = adjacent * tan(angle) - initial_round_extra;
162 spin_slice(weight_radius,
163 bearing_radius,
164 round_extra,
165 wall,
166 arms); } } } }
167 cylinder(h = actual_height + 0.1,
168 r = bearing_radius - bearing_lip_overhang,
169 center = true);
170 cylinder(h = bearing_thickness + 0.1,
171 r = bearing_radius + 0.1,
172 center = true);
173 for(arm = [0 : arms - 1]) {
174 rotate(arm * (360 / arms)) {
175 translate([bearing_radius + wall + weight_radius, 0]) {
176 cylinder(h = actual_height + 0.1,
177 r = weight_radius - weight_lip_overhang,
178 center = true);
179 cylinder(h = weight_thickness + 0.1,
180 r = weight_radius + 0.1,
181 center = true); } } } } }
182
183 /*
184 This file is part of 3d-printables.
185
186 3d-printables is free software: you can redistribute it and/or modify
187 it under the terms of the GNU Affero General Public License as published by
188 the Free Software Foundation, either version 3 of the License, or
189 (at your option) any later version.
190
191 3d-printables is distributed in the hope that it will be useful,
192 but WITHOUT ANY WARRANTY; without even the implied warranty of
193 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
194 GNU Affero General Public License for more details.
195
196 You should have received a copy of the GNU Affero General Public License
197 along with challenge-bot. If not, see <http://www.gnu.org/licenses/>.
198 */