1079d501a82fc4f52d281b0c8e96478a2a0653a9
[3501/stronghold-2016] / src / org / usfirst / frc / team3501 / robot / subsystems / DriveTrain.java
1 package org.usfirst.frc.team3501.robot.subsystems;
2
3 import org.usfirst.frc.team3501.robot.CheesyDriveHelper;
4 import org.usfirst.frc.team3501.robot.Constants;
5 import org.usfirst.frc.team3501.robot.commands.driving.JoystickDrive;
6
7 import edu.wpi.first.wpilibj.CANTalon;
8 import edu.wpi.first.wpilibj.CounterBase.EncodingType;
9 import edu.wpi.first.wpilibj.DoubleSolenoid;
10 import edu.wpi.first.wpilibj.DoubleSolenoid.Value;
11 import edu.wpi.first.wpilibj.Encoder;
12 import edu.wpi.first.wpilibj.RobotDrive;
13 import edu.wpi.first.wpilibj.command.PIDSubsystem;
14
15 public class DriveTrain extends PIDSubsystem {
16 // Determines if the "front" of the robot has been reversed
17 private boolean outputFlipped = false;
18
19 private static double pidOutput = 0;
20
21 private Encoder leftEncoder, rightEncoder;
22
23 private CANTalon frontLeft, frontRight, rearLeft, rearRight;
24 private RobotDrive robotDrive;
25
26 private DoubleSolenoid leftGearPiston, rightGearPiston;
27
28 private CheesyDriveHelper cheese;
29
30 // Drivetrain specific constants that relate to the inches per pulse value for
31 // the encoders
32
33 public DriveTrain() {
34 super(Constants.DriveTrain.kp, Constants.DriveTrain.ki,
35 Constants.DriveTrain.kd);
36
37 frontLeft = new CANTalon(Constants.DriveTrain.DRIVE_FRONT_LEFT);
38 frontRight = new CANTalon(Constants.DriveTrain.DRIVE_FRONT_RIGHT);
39 rearLeft = new CANTalon(Constants.DriveTrain.DRIVE_REAR_LEFT);
40 rearRight = new CANTalon(Constants.DriveTrain.DRIVE_REAR_RIGHT);
41
42 robotDrive = new RobotDrive(frontLeft, rearLeft, frontRight, rearRight);
43
44 leftEncoder = new Encoder(Constants.DriveTrain.ENCODER_LEFT_A,
45 Constants.DriveTrain.ENCODER_LEFT_B, false, EncodingType.k4X);
46 rightEncoder = new Encoder(Constants.DriveTrain.ENCODER_RIGHT_A,
47 Constants.DriveTrain.ENCODER_RIGHT_B, false, EncodingType.k4X);
48 leftEncoder.setDistancePerPulse(Constants.DriveTrain.INCHES_PER_PULSE);
49 rightEncoder.setDistancePerPulse(Constants.DriveTrain.INCHES_PER_PULSE);
50
51 leftEncoder.setDistancePerPulse(Constants.DriveTrain.INCHES_PER_PULSE);
52 rightEncoder.setDistancePerPulse(Constants.DriveTrain.INCHES_PER_PULSE);
53
54 this.disable();
55
56 leftGearPiston = new DoubleSolenoid(Constants.DriveTrain.LEFT_SHIFT_MODULE,
57 Constants.DriveTrain.LEFT_SHIFT_FORWARD,
58 Constants.DriveTrain.LEFT_SHIFT_REVERSE);
59 rightGearPiston = new DoubleSolenoid(
60 Constants.DriveTrain.RIGHT_SHIFT_MODULE,
61 Constants.DriveTrain.RIGHT_SHIFT_FORWARD,
62 Constants.DriveTrain.RIGHT_SHIFT_REVERSE);
63
64 cheese = new CheesyDriveHelper(this);
65 }
66
67 @Override
68 protected void initDefaultCommand() {
69 setDefaultCommand(new JoystickDrive());
70 }
71
72 // Print tne PID Output
73 public void printOutput() {
74 System.out.println("PIDOutput: " + pidOutput);
75 }
76
77 private double getAvgEncoderDistance() {
78 return (leftEncoder.getDistance() + rightEncoder.getDistance()) / 2;
79 }
80
81 // Whether or not the PID Controller thinks we have reached the target
82 // setpoint
83 public boolean reachedTarget() {
84 if (this.onTarget()) {
85 this.disable();
86 return true;
87 } else {
88 return false;
89 }
90 }
91
92 public void stop() {
93 setMotorSpeeds(0, 0);
94 }
95
96 public void resetEncoders() {
97 leftEncoder.reset();
98 rightEncoder.reset();
99 }
100
101 public double getRightSpeed() {
102 return rightEncoder.getRate(); // in inches per second
103 }
104
105 public double getLeftSpeed() {
106 return leftEncoder.getRate(); // in inches per second
107 }
108
109 public double getSpeed() {
110 return (getLeftSpeed() + getRightSpeed()) / 2.0; // in inches per second
111 }
112
113 public double getRightDistance() {
114 return rightEncoder.getDistance(); // in inches
115 }
116
117 public double getLeftDistance() {
118 return leftEncoder.getDistance(); // in inches
119 }
120
121 // Get error between the setpoint of PID Controller and the current state of
122 // the robot
123 public double getError() {
124 return Math.abs(this.getSetpoint() - getAvgEncoderDistance());
125 }
126
127 public void printEncoder(int i, int n) {
128 if (i % n == 0) {
129 System.out.println("Left: " + this.getLeftDistance());
130 System.out.println("Right: " + this.getRightDistance());
131
132 }
133 }
134
135 /*
136 * returns the PID output that is returned by the PID Controller
137 */
138 public double getOutput() {
139 return pidOutput;
140 }
141
142 // Updates the PID constants based on which control mode is being used
143 public void updatePID() {
144 this.getPIDController().setPID(Constants.DriveTrain.kp,
145 Constants.DriveTrain.ki, Constants.DriveTrain.kd);
146 }
147
148 public CANTalon getFrontLeft() {
149 return frontLeft;
150 }
151
152 public CANTalon getFrontRight() {
153 return frontRight;
154 }
155
156 public CANTalon getRearLeft() {
157 return rearLeft;
158 }
159
160 public CANTalon getRearRight() {
161 return rearRight;
162 }
163
164 /*
165 * Method is a required method that the PID Subsystem uses to return the
166 * calculated PID value to the driver
167 *
168 * @param Gives the user the output from the PID algorithm that is calculated
169 * internally
170 *
171 * Body: Uses the output, does some filtering and drives the robot
172 */
173 @Override
174 protected void usePIDOutput(double output) {
175 double left = 0;
176 double right = 0;
177 double drift = this.getLeftDistance() - this.getRightDistance();
178 if (Math.abs(output) > 0 && Math.abs(output) < 0.3)
179 output = Math.signum(output) * 0.3;
180 left = output;
181 right = output + drift * Constants.DriveTrain.kp / 10;
182 setMotorSpeeds(left, right);
183 pidOutput = output;
184 }
185
186 @Override
187 protected double returnPIDInput() {
188 return sensorFeedback();
189 }
190
191 /*
192 * Checks the drive mode
193 *
194 * @return the current state of the robot in each state Average distance from
195 * both sides of tank drive for Encoder Mode Angle from the gyro in GYRO_MODE
196 */
197 private double sensorFeedback() {
198 return getAvgEncoderDistance();
199 }
200
201 public void joystickDrive(double left, double right) {
202 // Handle flipping of the "front" of the robot
203 double k = (isFlipped() ? -1 : 1);
204 cheese.cheesyDrive(-left * k, -right,
205 getGearPistonValue() == Constants.DriveTrain.HIGH_GEAR);
206 }
207
208 public void setMotorSpeeds(double left, double right) {
209 double k = (isFlipped() ? -1 : 1);
210 cheese.cheesyDrive(-left * k, -right,
211 getGearPistonValue() == Constants.DriveTrain.HIGH_GEAR);
212 }
213
214 /**
215 * @return a value that is the current setpoint for the piston (kReverse or
216 * kForward)
217 */
218 public Value getGearPistonValue() {
219 return leftGearPiston.get(); // Pistons should always be in the same state
220 }
221
222 /**
223 * Changes the ball shift gear assembly to high
224 */
225 public void setHighGear() {
226 changeGear(Constants.DriveTrain.HIGH_GEAR);
227 }
228
229 /**
230 * Changes the ball shift gear assembly to low
231 */
232 public void setLowGear() {
233 changeGear(Constants.DriveTrain.LOW_GEAR);
234 }
235
236 /**
237 * Changes the gear to a DoubleSolenoid.Value
238 */
239 public void changeGear(DoubleSolenoid.Value gear) {
240 leftGearPiston.set(gear);
241 rightGearPiston.set(gear);
242 }
243
244 /**
245 * Switches drivetrain gears from high to low or low to high
246 */
247 public void switchGear() {
248 Value currentValue = getGearPistonValue();
249 Value setValue = (currentValue == Constants.DriveTrain.HIGH_GEAR) ? Constants.DriveTrain.LOW_GEAR
250 : Constants.DriveTrain.HIGH_GEAR;
251 changeGear(setValue);
252 }
253
254 /**
255 * Toggle whether the motor outputs are flipped, effectively switching which
256 * side of the robot is the front.
257 */
258 public void toggleFlipped() {
259 outputFlipped = !outputFlipped;
260 }
261
262 public boolean isFlipped() {
263 return outputFlipped;
264 }
265
266 }