change lidar ports
[3501/stronghold-2016] / src / org / usfirst / frc / team3501 / robot / subsystems / DriveTrain.java
1 package org.usfirst.frc.team3501.robot.subsystems;
2
3 import org.usfirst.frc.team3501.robot.Constants;
4 import org.usfirst.frc.team3501.robot.MathLib;
5 import org.usfirst.frc.team3501.robot.commands.driving.JoystickDrive;
6 import org.usfirst.frc.team3501.robot.sensors.GyroLib;
7 import org.usfirst.frc.team3501.robot.sensors.Lidar;
8
9 import edu.wpi.first.wpilibj.CANTalon;
10 import edu.wpi.first.wpilibj.CounterBase.EncodingType;
11 import edu.wpi.first.wpilibj.DoubleSolenoid;
12 import edu.wpi.first.wpilibj.DoubleSolenoid.Value;
13 import edu.wpi.first.wpilibj.Encoder;
14 import edu.wpi.first.wpilibj.I2C;
15 import edu.wpi.first.wpilibj.RobotDrive;
16 import edu.wpi.first.wpilibj.command.PIDSubsystem;
17
18 public class DriveTrain extends PIDSubsystem {
19 // Current Drive Mode Default Drive Mode is Manual
20 private int DRIVE_MODE = 1;
21 private static double pidOutput = 0;
22
23 private Encoder leftEncoder, rightEncoder;
24
25 public static Lidar lidar;
26
27 private CANTalon frontLeft, frontRight, rearLeft, rearRight;
28 private RobotDrive robotDrive;
29
30 private GyroLib gyro;
31 private DoubleSolenoid leftGearPiston, rightGearPiston;
32
33 // Drivetrain specific constants that relate to the inches per pulse value for
34 // the encoders
35
36 public DriveTrain() {
37 super(Constants.DriveTrain.kp, Constants.DriveTrain.ki,
38 Constants.DriveTrain.kd);
39
40 frontLeft = new CANTalon(Constants.DriveTrain.FRONT_LEFT);
41 frontRight = new CANTalon(Constants.DriveTrain.FRONT_RIGHT);
42 rearLeft = new CANTalon(Constants.DriveTrain.REAR_LEFT);
43 rearRight = new CANTalon(Constants.DriveTrain.REAR_RIGHT);
44
45 robotDrive = new RobotDrive(frontLeft, rearLeft, frontRight, rearRight);
46
47 lidar = new Lidar(I2C.Port.kMXP);
48 leftEncoder = new Encoder(Constants.DriveTrain.ENCODER_LEFT_A,
49 Constants.DriveTrain.ENCODER_LEFT_B, false, EncodingType.k4X);
50 rightEncoder = new Encoder(Constants.DriveTrain.ENCODER_RIGHT_A,
51 Constants.DriveTrain.ENCODER_RIGHT_B, false, EncodingType.k4X);
52 leftEncoder.setDistancePerPulse(Constants.DriveTrain.INCHES_PER_PULSE);
53 rightEncoder.setDistancePerPulse(Constants.DriveTrain.INCHES_PER_PULSE);
54
55 leftEncoder.setDistancePerPulse(Constants.DriveTrain.INCHES_PER_PULSE);
56 rightEncoder.setDistancePerPulse(Constants.DriveTrain.INCHES_PER_PULSE);
57
58 gyro = new GyroLib(I2C.Port.kOnboard, false);
59
60 DRIVE_MODE = Constants.DriveTrain.ENCODER_MODE;
61 setEncoderPID();
62 this.disable();
63 gyro.start();
64
65 leftGearPiston = new DoubleSolenoid(Constants.DriveTrain.LEFT_FORWARD,
66 Constants.DriveTrain.LEFT_REVERSE);
67 rightGearPiston = new DoubleSolenoid(Constants.DriveTrain.RIGHT_FORWARD,
68 Constants.DriveTrain.RIGHT_REVERSE);
69 Constants.DriveTrain.inverted = false;
70 }
71
72 @Override
73 protected void initDefaultCommand() {
74 setDefaultCommand(new JoystickDrive());
75 }
76
77 // Print tne PID Output
78 public void printOutput() {
79 System.out.println("PIDOutput: " + pidOutput);
80 }
81
82 private double getAvgEncoderDistance() {
83 return (leftEncoder.getDistance() + rightEncoder.getDistance()) / 2;
84 }
85
86 // Whether or not the PID Controller thinks we have reached the target
87 // setpoint
88 public boolean reachedTarget() {
89 if (this.onTarget()) {
90 this.disable();
91 return true;
92 } else {
93 return false;
94 }
95 }
96
97 public void stop() {
98 drive(0, 0);
99 }
100
101 public void resetEncoders() {
102 leftEncoder.reset();
103 rightEncoder.reset();
104 }
105
106 public double getLidarDistance() {
107 return lidar.pidGet();
108 }
109
110 public double getRightSpeed() {
111 return rightEncoder.getRate(); // in inches per second
112 }
113
114 public double getLeftSpeed() {
115 return leftEncoder.getRate(); // in inches per second
116 }
117
118 public double getSpeed() {
119 return (getLeftSpeed() + getRightSpeed()) / 2.0; // in inches per second
120 }
121
122 public double getRightDistance() {
123 return rightEncoder.getDistance(); // in inches
124 }
125
126 public double getLeftDistance() {
127 return leftEncoder.getDistance(); // in inches
128 }
129
130 // Get error between the setpoint of PID Controller and the current state of
131 // the robot
132 public double getError() {
133 if (DRIVE_MODE == Constants.DriveTrain.ENCODER_MODE)
134 return Math.abs(this.getSetpoint() - getAvgEncoderDistance());
135 else
136 return Math.abs(this.getSetpoint() + getGyroAngle());
137 }
138
139 public double getGyroAngle() {
140 return gyro.getRotationZ().getAngle();
141 }
142
143 public void resetGyro() {
144 gyro.reset();
145 }
146
147 public void printEncoder(int i, int n) {
148 if (i % n == 0) {
149 System.out.println("Left: " + this.getLeftDistance());
150 System.out.println("Right: " + this.getRightDistance());
151
152 }
153 }
154
155 public void printGyroOutput() {
156 System.out.println("Gyro Angle" + -this.getGyroAngle());
157 }
158
159 /*
160 * returns the PID output that is returned by the PID Controller
161 */
162 public double getOutput() {
163 return pidOutput;
164 }
165
166 // Updates the PID constants based on which control mode is being used
167 public void updatePID() {
168 if (DRIVE_MODE == Constants.DriveTrain.ENCODER_MODE)
169 this.getPIDController().setPID(Constants.DriveTrain.kp,
170 Constants.DriveTrain.ki, Constants.DriveTrain.kd);
171 else
172 this.getPIDController().setPID(Constants.DriveTrain.gp,
173 Constants.DriveTrain.gd, Constants.DriveTrain.gi);
174 }
175
176 public CANTalon getFrontLeft() {
177 return frontLeft;
178 }
179
180 public CANTalon getFrontRight() {
181 return frontRight;
182 }
183
184 public CANTalon getRearLeft() {
185 return rearLeft;
186 }
187
188 public CANTalon getRearRight() {
189 return rearRight;
190 }
191
192 public int getMode() {
193 return DRIVE_MODE;
194 }
195
196 /*
197 * Method is a required method that the PID Subsystem uses to return the
198 * calculated PID value to the driver
199 *
200 * @param Gives the user the output from the PID algorithm that is calculated
201 * internally
202 *
203 * Body: Uses the output, does some filtering and drives the robot
204 */
205 @Override
206 protected void usePIDOutput(double output) {
207 double left = 0;
208 double right = 0;
209 if (DRIVE_MODE == Constants.DriveTrain.ENCODER_MODE) {
210 double drift = this.getLeftDistance() - this.getRightDistance();
211 if (Math.abs(output) > 0 && Math.abs(output) < 0.3)
212 output = Math.signum(output) * 0.3;
213 left = output;
214 right = output + drift * Constants.DriveTrain.kp / 10;
215 } else if (DRIVE_MODE == Constants.DriveTrain.GYRO_MODE) {
216 left = output;
217 right = -output;
218 }
219 drive(left, right);
220 pidOutput = output;
221 }
222
223 @Override
224 protected double returnPIDInput() {
225 return sensorFeedback();
226 }
227
228 /*
229 * Checks the drive mode
230 *
231 * @return the current state of the robot in each state Average distance from
232 * both sides of tank drive for Encoder Mode Angle from the gyro in GYRO_MODE
233 */
234 private double sensorFeedback() {
235 if (DRIVE_MODE == Constants.DriveTrain.ENCODER_MODE)
236 return getAvgEncoderDistance();
237 else if (DRIVE_MODE == Constants.DriveTrain.GYRO_MODE)
238 return -this.getGyroAngle();
239 // counterclockwise is positive on joystick but we want it to be negative
240 else
241 return 0;
242 }
243
244 /*
245 * @param left and right setpoints to set to the left and right side of tank
246 * inverted is for Logan, wants the robot to invert all controls left = right
247 * and right = left negative input is required for the regular rotation
248 * because RobotDrive tankdrive method drives inverted
249 */
250 public void drive(double left, double right) {
251 robotDrive.tankDrive(-left, -right);
252 // dunno why but inverted drive (- values is forward)
253 if (!Constants.DriveTrain.inverted)
254 robotDrive.tankDrive(-left, -right);
255 else
256 robotDrive.tankDrive(right, left);
257 }
258
259 /*
260 * constrains the distance to within -100 and 100 since we aren't going to
261 * drive more than 100 inches
262 *
263 * Configure Encoder PID
264 *
265 * Sets the setpoint to the PID subsystem
266 */
267 public void driveDistance(double dist, double maxTimeOut) {
268 dist = MathLib.constrain(dist, -100, 100);
269 setEncoderPID();
270 setSetpoint(dist);
271 }
272
273 /*
274 * Sets the encoder mode Updates the PID constants sets the tolerance and sets
275 * output/input ranges Enables the PID controllers
276 */
277 public void setEncoderPID() {
278 DRIVE_MODE = Constants.DriveTrain.ENCODER_MODE;
279 this.updatePID();
280 this.setAbsoluteTolerance(Constants.DriveTrain.encoderTolerance);
281 this.setOutputRange(-1.0, 1.0);
282 this.setInputRange(-200.0, 200.0);
283 this.enable();
284 }
285
286 /*
287 * Sets the Gyro Mode Updates the PID constants, sets the tolerance and sets
288 * output/input ranges Enables the PID controllers
289 */
290 private void setGyroPID() {
291 DRIVE_MODE = Constants.DriveTrain.GYRO_MODE;
292 this.updatePID();
293 this.getPIDController().setPID(Constants.DriveTrain.gp,
294 Constants.DriveTrain.gi, Constants.DriveTrain.gd);
295
296 this.setAbsoluteTolerance(Constants.DriveTrain.gyroTolerance);
297 this.setOutputRange(-1.0, 1.0);
298 this.setInputRange(-360.0, 360.0);
299 this.enable();
300 }
301
302 /*
303 * Turning method that should be used repeatedly in a command
304 *
305 * First constrains the angle to within -360 and 360 since that is as much as
306 * we need to turn
307 *
308 * Configures Gyro PID and sets the setpoint as an angle
309 */
310 public void turnAngle(double angle) {
311 angle = MathLib.constrain(angle, -360, 360);
312 setGyroPID();
313 setSetpoint(angle);
314 }
315
316 public void setMotorSpeeds(double left, double right) {
317 // positive setpoint to left side makes it go backwards
318 // positive setpoint to right side makes it go forwards.
319 frontLeft.set(-left);
320 rearLeft.set(-left);
321 frontRight.set(right);
322 rearRight.set(right);
323 }
324
325 /*
326 * @return a value that is the current setpoint for the piston kReverse or
327 * kForward
328 */
329 public Value getLeftGearPistonValue() {
330 return leftGearPiston.get();
331 }
332
333 /*
334 * @return a value that is the current setpoint for the piston kReverse or
335 * kForward
336 */
337 public Value getRightGearPistonValue() {
338 return rightGearPiston.get();
339 }
340
341 /*
342 * Changes the ball shift gear assembly to high
343 */
344 public void setHighGear() {
345 changeGear(Constants.DriveTrain.HIGH_GEAR);
346 }
347
348 /*
349 * Changes the ball shift gear assembly to low
350 */
351 public void setLowGear() {
352 changeGear(Constants.DriveTrain.LOW_GEAR);
353 }
354
355 /*
356 * changes the gear to a DoubleSolenoid.Value
357 */
358 public void changeGear(DoubleSolenoid.Value gear) {
359 leftGearPiston.set(gear);
360 rightGearPiston.set(gear);
361 }
362
363 }