add method to calculate angle to turn after passing through defense to shoot
[3501/stronghold-2016] / src / org / usfirst / frc / team3501 / robot / subsystems / DriveTrain.java
index 6969ed1d961de1130ef7f9658578a770b4a09662..0d1db15b930268ccea2a86b65627118080932e14 100644 (file)
 package org.usfirst.frc.team3501.robot.subsystems;
 
 import org.usfirst.frc.team3501.robot.Constants;
+import org.usfirst.frc.team3501.robot.GyroLib;
+import org.usfirst.frc.team3501.robot.MathLib;
+import org.usfirst.frc.team3501.robot.commands.driving.JoystickDrive;
 
 import edu.wpi.first.wpilibj.CANTalon;
 import edu.wpi.first.wpilibj.CounterBase.EncodingType;
+import edu.wpi.first.wpilibj.DoubleSolenoid;
+import edu.wpi.first.wpilibj.DoubleSolenoid.Value;
 import edu.wpi.first.wpilibj.Encoder;
-import edu.wpi.first.wpilibj.command.Subsystem;
+import edu.wpi.first.wpilibj.I2C;
+import edu.wpi.first.wpilibj.RobotDrive;
+import edu.wpi.first.wpilibj.command.PIDSubsystem;
+
+public class DriveTrain extends PIDSubsystem {
+  private static double kp = 0.013, ki = 0.000015, kd = -0.002;
+  private static double gp = 0.018, gi = 0.000015, gd = 0;
+  private static double pidOutput = 0;
+  private static double encoderTolerance = 8.0, gyroTolerance = 5.0;
+  private int DRIVE_MODE = 1;
+
+  private static final int MANUAL_MODE = 1, ENCODER_MODE = 2, GYRO_MODE = 3;
 
-public class DriveTrain extends Subsystem {
-  // Drivetrain related objects
   private Encoder leftEncoder, rightEncoder;
+
+  public static Lidar leftLidar;
+  public static Lidar rightLidar;
+
   private CANTalon frontLeft, frontRight, rearLeft, rearRight;
+  private RobotDrive robotDrive;
+
+  private GyroLib gyro;
+  private DoubleSolenoid leftGearPiston, rightGearPiston;
+  // Drivetrain specific constants that relate to the inches per pulse value for
+  // the encoders
+  private final static double WHEEL_DIAMETER = 6.0; // in inches
+  private final static double PULSES_PER_ROTATION = 256; // in pulses
+  private final static double OUTPUT_SPROCKET_DIAMETER = 2.0; // in inches
+  private final static double WHEEL_SPROCKET_DIAMETER = 3.5; // in inches
+  public final static double INCHES_PER_PULSE = (((Math.PI)
+      * OUTPUT_SPROCKET_DIAMETER / PULSES_PER_ROTATION)
+      / WHEEL_SPROCKET_DIAMETER) * WHEEL_DIAMETER;
+
+  // Drivetrain specific constants that relate to the PID controllers
+  private final static double Kp = 1.0, Ki = 0.0,
+      Kd = 0.0 * (OUTPUT_SPROCKET_DIAMETER / PULSES_PER_ROTATION)
+          / (WHEEL_SPROCKET_DIAMETER) * WHEEL_DIAMETER;
 
   public DriveTrain() {
+    super(kp, ki, kd);
+
     frontLeft = new CANTalon(Constants.DriveTrain.FRONT_LEFT);
     frontRight = new CANTalon(Constants.DriveTrain.FRONT_RIGHT);
     rearLeft = new CANTalon(Constants.DriveTrain.REAR_LEFT);
     rearRight = new CANTalon(Constants.DriveTrain.REAR_RIGHT);
 
+    robotDrive = new RobotDrive(frontLeft, rearLeft, frontRight, rearRight);
+
+    leftLidar = new Lidar(I2C.Port.kOnboard);
+    rightLidar = new Lidar(I2C.Port.kOnboard); // TODO: find port for second
+                                               // lidar
     leftEncoder = new Encoder(Constants.DriveTrain.ENCODER_LEFT_A,
         Constants.DriveTrain.ENCODER_LEFT_B, false, EncodingType.k4X);
     rightEncoder = new Encoder(Constants.DriveTrain.ENCODER_RIGHT_A,
         Constants.DriveTrain.ENCODER_RIGHT_B, false, EncodingType.k4X);
     leftEncoder.setDistancePerPulse(Constants.DriveTrain.INCHES_PER_PULSE);
     rightEncoder.setDistancePerPulse(Constants.DriveTrain.INCHES_PER_PULSE);
+
+    leftEncoder.setDistancePerPulse(Constants.DriveTrain.INCHES_PER_PULSE);
+    rightEncoder.setDistancePerPulse(Constants.DriveTrain.INCHES_PER_PULSE);
+
+    gyro = new GyroLib(I2C.Port.kOnboard, false);
+
+    DRIVE_MODE = Constants.DriveTrain.ENCODER_MODE;
+    setEncoderPID();
+    this.disable();
+    gyro.start();
+
+    leftGearPiston = new DoubleSolenoid(Constants.DriveTrain.LEFT_FORWARD,
+        +Constants.DriveTrain.LEFT_REVERSE);
+    rightGearPiston = new DoubleSolenoid(Constants.DriveTrain.RIGHT_FORWARD,
+        Constants.DriveTrain.RIGHT_REVERSE);
   }
 
   @Override
   protected void initDefaultCommand() {
+    setDefaultCommand(new JoystickDrive());
+  }
+
+  public void printOutput() {
+    System.out.println("PIDOutput: " + pidOutput);
+  }
+
+  private double getAvgEncoderDistance() {
+    return (leftEncoder.getDistance() + rightEncoder.getDistance()) / 2;
+  }
+
+  public boolean reachedTarget() {
+    if (this.onTarget()) {
+      this.disable();
+      return true;
+    } else {
+      return false;
+    }
+  }
+
+  public void stop() {
+    drive(0, 0);
   }
 
   public void resetEncoders() {
@@ -35,6 +115,14 @@ public class DriveTrain extends Subsystem {
     rightEncoder.reset();
   }
 
+  public double getLeftLidarDistance() {
+    return leftLidar.pidGet();
+  }
+
+  public double getRightLidarDistance() {
+    return rightLidar.pidGet();
+  }
+
   public double getRightSpeed() {
     return rightEncoder.getRate(); // in inches per second
   }
@@ -55,20 +143,161 @@ public class DriveTrain extends Subsystem {
     return leftEncoder.getDistance(); // in inches
   }
 
-  public double getDistance() {
-    return (getRightDistance() + getLeftDistance()) / 2.0; // in inches
+  public double getError() {
+    if (DRIVE_MODE == Constants.DriveTrain.ENCODER_MODE)
+      return Math.abs(this.getSetpoint() - getAvgEncoderDistance());
+    else
+      return Math.abs(this.getSetpoint() + getGyroAngle());
   }
 
-  public void stop() {
-    setMotorSpeeds(0, 0);
+  public double getGyroAngle() {
+    return gyro.getRotationZ().getAngle();
+  }
+
+  public void resetGyro() {
+    gyro.reset();
+  }
+
+  public void printEncoder(int i, int n) {
+    if (i % n == 0) {
+      System.out.println("Left: " + this.getLeftDistance());
+      System.out.println("Right: " + this.getRightDistance());
+
+    }
+  }
+
+  public void printGyroOutput() {
+    System.out.println("Gyro Angle" + -this.getGyroAngle());
+  }
+
+  public double getOutput() {
+    return pidOutput;
+  }
+
+  public void updatePID() {
+    if (DRIVE_MODE == Constants.DriveTrain.ENCODER_MODE)
+      this.getPIDController().setPID(kp, ki, kd);
+    else
+      this.getPIDController().setPID(gp, gd, gi);
+  }
+
+  public CANTalon getFrontLeft() {
+    return frontLeft;
+  }
+
+  public CANTalon getFrontRight() {
+    return frontRight;
+  }
+
+  public CANTalon getRearLeft() {
+    return rearLeft;
+  }
+
+  public CANTalon getRearRight() {
+    return rearRight;
+  }
+
+  public int getMode() {
+    return DRIVE_MODE;
+  }
+
+  @Override
+  protected void usePIDOutput(double output) {
+    double left = 0;
+    double right = 0;
+    if (DRIVE_MODE == Constants.DriveTrain.ENCODER_MODE) {
+      double drift = this.getLeftDistance() - this.getRightDistance();
+      if (Math.abs(output) > 0 && Math.abs(output) < 0.3)
+        output = Math.signum(output) * 0.3;
+      left = output;
+      right = output + drift * kp / 10;
+    } else if (DRIVE_MODE == Constants.DriveTrain.GYRO_MODE) {
+      left = output;
+      right = -output;
+    }
+    drive(left, right);
+    pidOutput = output;
+  }
+
+  @Override
+  protected double returnPIDInput() {
+    return sensorFeedback();
+  }
+
+  private double sensorFeedback() {
+    if (DRIVE_MODE == Constants.DriveTrain.ENCODER_MODE)
+      return getAvgEncoderDistance();
+    else if (DRIVE_MODE == Constants.DriveTrain.GYRO_MODE)
+      return -this.getGyroAngle();
+    // counterclockwise is positive on joystick but we want it to be negative
+    else
+      return 0;
+  }
+
+  public void drive(double left, double right) {
+    robotDrive.tankDrive(-left, -right);
+    // dunno why but inverted drive (- values is forward)
+  }
+
+  public void driveDistance(double dist, double maxTimeOut) {
+    dist = MathLib.constrain(dist, -100, 100);
+    setEncoderPID();
+    setSetpoint(dist);
+  }
+
+  public void setEncoderPID() {
+    DRIVE_MODE = Constants.DriveTrain.ENCODER_MODE;
+    this.updatePID();
+    this.setAbsoluteTolerance(encoderTolerance);
+    this.setOutputRange(-1.0, 1.0);
+    this.setInputRange(-200.0, 200.0);
+    this.enable();
+  }
+
+  private void setGyroPID() {
+    DRIVE_MODE = Constants.DriveTrain.GYRO_MODE;
+    this.updatePID();
+    this.getPIDController().setPID(gp, gi, gd);
+
+    this.setAbsoluteTolerance(gyroTolerance);
+    this.setOutputRange(-1.0, 1.0);
+    this.setInputRange(-360.0, 360.0);
+    this.enable();
+  }
+
+  public void turnAngle(double angle) {
+    angle = MathLib.constrain(angle, -360, 360);
+    setGyroPID();
+    setSetpoint(angle);
+  }
+
+  public void setMotorSpeeds(double left, double right) {
+    // positive setpoint to left side makes it go backwards
+    // positive setpoint to right side makes it go forwards.
+    frontLeft.set(-left);
+    rearLeft.set(-left);
+    frontRight.set(right);
+    rearRight.set(right);
+  }
+
+  public Value getLeftGearPistonValue() {
+    return leftGearPiston.get();
+  }
+
+  public Value getRightGearPistonValue() {
+    return rightGearPiston.get();
+  }
+
+  public void setHighGear() {
+    changeGear(Constants.DriveTrain.HIGH_GEAR);
+  }
+
+  public void setLowGear() {
+    changeGear(Constants.DriveTrain.LOW_GEAR);
   }
 
-  public void setMotorSpeeds(double leftSpeed, double rightSpeed) {
-    // speed passed to right motor is negative because right motor rotates in
-    // opposite direction
-    this.frontLeft.set(leftSpeed);
-    this.frontRight.set(-rightSpeed);
-    this.rearLeft.set(leftSpeed);
-    this.rearRight.set(-rightSpeed);
+  public void changeGear(DoubleSolenoid.Value gear) {
+    leftGearPiston.set(gear);
+    rightGearPiston.set(gear);
   }
 }