separate data into *-data.scad for 3d models
[challenge-bot] / 3d-printables / sonar-table-top-holder-data.scad
1 // challenge-bot
2 // GNU AGPLv3 (or later at your option)
3 // project available at these locations:
4 // https://gitorious.org/ozzloy/challenge-bot
5 // https://github.com/waynegramlich/challenge-bot
6
7 /*
8 this holds an hc-sr04 sonar sensor to a 3/16 inch deck.
9 http://fritzing.org/projects/hc-sr04-project
10 it can hold the sonar sensor either facing down, or forwards.
11 when facing down, it can detect if it passes over the edge of a table.
12 when facing forwards, it can detect and follow something in front of it.
13 */
14
15 $fn = 60;
16
17 include <oshw-data.scad>
18
19 // 3/16 inch in mm deck_depth = 4.7625;
20 // 1/4 inch in mm = 6.35
21 // subtract a little to be a squeeze fit
22 deck_depth = 4.7625 - 0.4;
23 // sonar sensor measurements taken with calipers:
24 // 10.82 in between, 42.33 outside, 15.82 diameter
25 // measured diameter of 15.82 with calipers,
26 // but when printed ends up being too small, so add some
27 sonar_diameter = 15.82 + 0.4;
28 sonar_radius = sonar_diameter / 2;
29 sonar_height = 13.8;
30 between_sonar_centers = sonar_diameter + 10.82;
31 // the sonar cylinders are placed on the pcb at slightly different positions
32 // from one sensor to the next, so this allows for that variance.
33 between_sonar_centers_variance = 2;
34 // keep at least this much plastic surrounding the sonar cylinder on all sides
35 buffer = 3;
36 sonar_holder_length = buffer + between_sonar_centers + sonar_diameter + buffer;
37 sonar_holder_width = buffer + sonar_diameter + buffer;
38 // sonar_holder_depth is deck_depth minus a little bit to make arm fit
39 // into deck holder
40 sonar_holder_depth = deck_depth - 0.7875;
41
42 deck_holder_length = sonar_holder_depth * 2 + deck_depth + 15;
43 module sonar_holder_2d() {
44 difference() {
45 square([sonar_holder_length, sonar_holder_width]); } }
46
47 module sonars() {
48 translate([between_sonar_centers / 2, 0, 0]) {
49 cylinder(r = sonar_radius, h = sonar_height); }
50 // for the variance with which the physical sonar cylinders are placed
51 translate([between_sonar_centers / 2 - between_sonar_centers_variance, 0, 0]) {
52 cylinder(r = sonar_radius, h = sonar_height);
53 translate([0, -sonar_radius, 0]) {
54 cube([between_sonar_centers_variance, sonar_diameter, sonar_height]); } }
55 translate([-between_sonar_centers / 2, 0, 0]) {
56 cylinder(r = sonar_radius, h = sonar_height); } }
57
58 module sonar_holder() {
59 elbow_length = deck_depth - 0.5;
60 rounded_corner_radius = buffer;
61 difference() {
62 cube([sonar_holder_length, sonar_holder_width, sonar_holder_depth]);
63 translate([sonar_holder_length / 2, sonar_holder_width / 2, -0.05]) {
64 sonars(); }
65 translate([sonar_holder_length,
66 sonar_holder_width,
67 0]) {
68 corner_rounder(rounded_corner_radius,
69 sonar_holder_depth,
70 "bottom-right"); } }
71 translate([sonar_holder_length, 0, 0]) {
72 cube([elbow_length, deck_depth, sonar_holder_depth]);
73 translate([elbow_length, 0, 0]) {
74 linear_extrude(height = sonar_holder_depth) {
75 polygon([[ 0, 0],
76 [sonar_holder_depth, 0],
77 [sonar_holder_depth, sonar_holder_width / 2],
78 [ 0,
79 sonar_holder_width / 2 + sonar_holder_depth]]); }
80 translate([0, (sonar_holder_width + sonar_holder_depth) / 2, 0]) {
81 cube([sonar_holder_depth / 2,
82 (sonar_holder_width - sonar_holder_depth) / 2 + 0.8,
83 sonar_holder_depth]); }
84 translate([-1.7, sonar_holder_width + 0.8, 0]) {
85 linear_extrude(height = sonar_holder_depth) {
86 polygon([[ 0, 0],
87 [sonar_holder_depth / 2 + 1.7, 4],
88 [sonar_holder_depth / 2 + 1.7, 0]]); } } } } }
89
90 module deck_holder() {
91 deck_holder_width = sonar_holder_width - deck_depth;
92 deck_holder_height = sonar_holder_depth * 2 + deck_depth;
93 linear_extrude(height = deck_holder_width) {
94 difference() {
95 square([deck_holder_length, deck_holder_height]);
96 translate([sonar_holder_depth, sonar_holder_depth]) {
97 square(deck_depth); }
98 translate([deck_holder_height, sonar_holder_depth]) {
99 square([deck_holder_length - (deck_holder_height), deck_depth]); } } }
100 translate([deck_holder_length - oshw_dy * 0.05, 0, deck_holder_width / 2])
101 scale([0.1, 1, 0.1])
102 rotate(v = [1, 0, 0], a = 90)
103 rotate(90)
104 linear_extrude(height = 0.5)
105 oshw();
106 translate([deck_holder_length - oshw_dy * 0.05,
107 deck_holder_height + 0.5,
108 deck_holder_width / 2])
109 rotate(v = [1, 0, 0], a = 90)
110 rotate(90)
111 scale([0.1, 0.1, 1])
112 linear_extrude(height = 0.5)
113 oshw(); }
114
115 module corner_rounder_2d(radius, corner_name = "top-left") {
116 rotate_for_corner = (corner_name == "top-left") ? 0 :
117 ((corner_name == "top-right") ? -90 :
118 ((corner_name == "bottom-left") ? 90 :
119 ((corner_name == "bottom-right") ? 180 :
120 1 / 0)));
121 rotate(rotate_for_corner) {
122 difference() {
123 square(radius);
124 translate([radius, radius]) {
125 circle(radius); } } } }
126
127 module corner_rounder(radius, height, corner_name = "top-left") {
128 linear_extrude(height = height) {
129 corner_rounder_2d(radius, corner_name); } }