separate data into *-data.scad for 3d models
[challenge-bot] / 3d-printables / deck-holder-data.scad
diff --git a/3d-printables/deck-holder-data.scad b/3d-printables/deck-holder-data.scad
new file mode 100644 (file)
index 0000000..2526c9e
--- /dev/null
@@ -0,0 +1,145 @@
+// challenge-bot
+// GNU AGPLv3 (or later at your option)
+// project available at these locations:
+// https://gitorious.org/ozzloy/challenge-bot
+// https://github.com/waynegramlich/challenge-bot
+
+/*
+  this holds an hc-sr04 sonar sensor to a 3/16 inch deck.
+  http://fritzing.org/projects/hc-sr04-project
+  it can hold the sonar sensor either facing down, or forwards.
+  when facing down, it can detect if it passes over the edge of a table.
+  when facing forwards, it can detect and follow something in front of it.
+ */
+
+$fn = 60;
+
+use <oshw.scad>
+// 3/16 inch in mm deck_depth = 4.7625;
+// 1/4 inch in mm = 6.35
+// subtract a little to be a squeeze fit
+deck_depth = 4.7625 - 0.4;
+// sonar sensor measurements taken with calipers:
+//  10.82 in between, 42.33 outside, 15.82 diameter
+// measured diameter of 15.82 with calipers,
+//  but when printed ends up being too small, so add some
+sonar_diameter = 15.82 + 0.4;
+sonar_radius = sonar_diameter / 2;
+sonar_height = 13.8;
+between_sonar_centers = sonar_diameter + 10.82;
+// the sonar cylinders are placed on the pcb at slightly different positions
+//  from one sensor to the next, so this allows for that variance.
+between_sonar_centers_variance = 2;
+// keep at least this much plastic surrounding the sonar cylinder on all sides
+buffer = 3;
+sonar_holder_length = buffer + between_sonar_centers + sonar_diameter + buffer;
+sonar_holder_width = buffer + sonar_diameter + buffer;
+// sonar_holder_depth is deck_depth minus a little bit to make arm fit
+//  into deck holder
+sonar_holder_depth = deck_depth - 0.7875;
+
+deck_holder_length = sonar_holder_depth * 2 + deck_depth + 15;
+
+oshw_dy = 120.366;
+oshw_dx = 133.888;
+
+// 3/16 inch in mm deck_depth = 4.7625;
+// 1/4 inch in mm = 6.35
+// subtract a little to be a squeeze fit
+deck_depth = 4.7625 - 0.4;
+// sonar sensor measurements taken with calipers:
+//  10.82 in between, 42.33 outside, 15.82 diameter
+// measured diameter of 15.82 with calipers,
+//  but when printed ends up being too small, so add some
+sonar_diameter = 15.82 + 0.4;
+sonar_radius = sonar_diameter / 2;
+sonar_height = 13.8;
+between_sonar_centers = sonar_diameter + 10.82;
+// the sonar cylinders are placed on the pcb at slightly different positions
+//  from one sensor to the next, so this allows for that variance.
+between_sonar_centers_variance = 2;
+// keep at least this much plastic surrounding the sonar cylinder on all sides
+buffer = 3;
+sonar_holder_length = buffer + between_sonar_centers + sonar_diameter + buffer;
+sonar_holder_width = buffer + sonar_diameter + buffer;
+// sonar_holder_depth is deck_depth minus a little bit to make arm fit
+//  into deck holder
+sonar_holder_depth = deck_depth - 0.7875;
+
+deck_holder_length = sonar_holder_depth * 2 + deck_depth + 15;
+
+module sonars() {
+  translate([between_sonar_centers / 2, 0, 0]) {
+    cylinder(r = sonar_radius, h = sonar_height); }
+  // for the variance with which the physical sonar cylinders are placed
+  translate([between_sonar_centers / 2 - between_sonar_centers_variance, 0, 0]) {
+    cylinder(r = sonar_radius, h = sonar_height);
+    translate([0, -sonar_radius, 0]) {
+      cube([between_sonar_centers_variance, sonar_diameter, sonar_height]); } }
+  translate([-between_sonar_centers / 2, 0, 0]) {
+    cylinder(r = sonar_radius, h = sonar_height); } }
+
+module sonar_holder() {
+  elbow_length = deck_depth;
+  rounded_corner_radius = buffer;
+  difference() {
+    cube([sonar_holder_length, sonar_holder_width, sonar_holder_depth]);
+    translate([sonar_holder_length / 2, sonar_holder_width / 2, -0.05]) {
+      sonars(); }
+    translate([sonar_holder_length - rounded_corner_radius,
+               sonar_holder_width - rounded_corner_radius,
+               0]) {
+      corner_rounder(rounded_corner_radius, sonar_holder_depth); } }
+  translate([sonar_holder_length, 0, 0]) {
+    cube([elbow_length, deck_depth, sonar_holder_depth]);
+    translate([elbow_length, 0, 0]) {
+      linear_extrude(height = sonar_holder_depth) {
+        polygon([[                 0, 0],
+                 [sonar_holder_depth, 0],
+                 [sonar_holder_depth, sonar_holder_width / 2],
+                 [                 0,
+                                   sonar_holder_width / 2 + sonar_holder_depth]]); }
+      translate([0, (sonar_holder_width + sonar_holder_depth) / 2, 0]) {
+        cube([sonar_holder_depth / 2,
+              (sonar_holder_width - sonar_holder_depth) / 2 + 0.8,
+              sonar_holder_depth]); }
+      translate([-1.7, sonar_holder_width + 0.8, 0]) {
+        linear_extrude(height = sonar_holder_depth) {
+          polygon([[                           0, 0],
+                   [sonar_holder_depth / 2 + 1.7, 4],
+                   [sonar_holder_depth / 2 + 1.7, 0]]); } } } } }
+
+module deck_holder() {
+  deck_holder_width = sonar_holder_width - deck_depth;
+  deck_holder_height = sonar_holder_depth * 2 + deck_depth;
+  linear_extrude(height = deck_holder_width) {
+    difference() {
+      square([deck_holder_length, deck_holder_height]);
+      translate([sonar_holder_depth - 0.15, sonar_holder_depth - 0.15]) {
+        square(deck_depth + 0.3); }
+      translate([deck_holder_height, sonar_holder_depth - 0.3]) {
+        square([deck_holder_length - (deck_holder_height),
+                deck_depth + 0.6]); } } }
+  translate([deck_holder_length - oshw_dy * 0.05, 0, deck_holder_width / 2])
+  scale([0.1, 1, 0.1])
+  rotate(v = [1, 0, 0], a = 90)
+  rotate(90)
+  linear_extrude(height = 0.5)
+  oshw();
+  translate([deck_holder_length - oshw_dy * 0.05,
+             deck_holder_height + 0.5,
+             deck_holder_width / 2])
+  rotate(v = [1, 0, 0], a = 90)
+  rotate(90)
+  scale([0.1, 0.1, 1])
+  linear_extrude(height = 0.5)
+  oshw(); }
+
+module corner_rounder_2d(radius) {
+  difference() {
+    square(radius);
+    circle(radius); } }
+
+module corner_rounder(radius, height) {
+  linear_extrude(height = height) {
+    corner_rounder_2d(radius); } }